Abstract

We report an artificial acoustic compressibility-near-zero medium made of a phononic crystal composed of epoxy blocks arranged in a square lattice. Its anisotropic effective density leads to a linear cross in its isofrequency contour in the vicinity of the Brillouin zone center, as its effective compressibility approaches zero. When a Gaussian beam is normally incident on the phononic crystal, a splitting effect is achieved at the frequency of the crossing point. Based on such a beam-splitting effect, an acoustic cloaking of an irregular-shaped object embedded in the phononic crystal is demonstrated both theoretically and experimentally. Such an anisotropic zero-index material offers a potential method to control acoustic waves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call