Abstract

Acoustic backscattering from a sandy seabed was measured at a frequency of 5.5 kHz at a wide range of grazing angles. The measurement system used was the University of Miami's sonar tower, consisting of an omni-directional broadband source and two 16-channel hydrophone receiver arrays. A volume scattering model, which combines a fluid model with reflection/transmission coefficients derived from the Biot theory, is used. This model allows energy penetration into the bottom, calculations of the volume scattering at all grazing angles, and the frequency dependence of the sound speed in the water-saturated sediment. In the model, rather than assume sound-speed correlation length in sedimentary volume, core data were used to assimilate a 3-D fluctuation spectrum of the density. The numerical results showed excellent agreement with the measurement at lower grazing angles. We concluded that the interface roughness scattering was dominant at lower grazing angles, while the volume scattering is dominant at higher grazing angles at the sandy site. The border of the dominance of the interface and volume scattering was the so-called critical angle at this frequency. The frequency dependence of sound speeds is also discussed

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.