Abstract

Sensors for industrial and structural health monitoring are often in shielded and hard-to-reach places. Acoustic wireless power transfer (WPT) and piezoelectric backscatter enable batteryless sensors in such scenarios. Although the low efficiency of WPT demands power-conserving sensor nodes, backscatter communication, which consumes near-zero power, has not yet been combined with WPT. This study reviews the available approaches to acoustic WPT and active and passive acoustic through-metal communication. We design a batteryless and backscattering tag prototype from commercially available components. Analysis of the prototypes reveals that low-power hardware poses additional challenges for communication, i.e., unstable and inaccurate oscillators. Therefore, we implement a software-defined receiver using digital phase-locked loops (DPLLs) to mitigate the effects of oscillator instability. We show that DPLLs enable reliable backscatter communication with inaccurate clocks using simulation and real-world measurements. Our prototype achieves communication at 2 kBs-1 over a distance of 3 m. Furthermore, during transmission, the prototype consumes less than 300 μW power. At the same time, over 4 mW of power is received through wireless transmission over a distance of 3 m with an efficiency of 2.8%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.