Abstract

The acoustic properties of a robust tissue-mimicking material based on konjac–carrageenan at ultrasound frequencies in the range 5–60 MHz are described. Acoustic properties were characterized using two methods: a broadband reflection substitution technique using a commercially available preclinical ultrasound scanner (Vevo 770, FUJIFILM VisualSonics, Toronto, ON, Canada), and a dedicated high-frequency ultrasound facility developed at the National Physical Laboratory (NPL, Teddington, UK), which employed a broadband through-transmission substitution technique. The mean speed of sound across the measured frequencies was found to be 1551.7 ± 12.7 and 1547.7 ± 3.3 m s−1, respectively. The attenuation exhibited a non-linear dependence on frequency, f (MHz), in the form of a polynomial function: 0.009787f2 + 0.2671f and 0.01024f2 + 0.3639f, respectively. The characterization of this tissue-mimicking material will provide reference data for designing phantoms for preclinical systems, which may, in certain applications such as flow phantoms, require a physically more robust tissue-mimicking material than is currently available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.