Abstract

Acoustic and thermal properties were determined for boards made from Washingtonia palm tree pruning waste. Three types of boards with different particle sizes (0.25 to 1.00 mm, 1.00 to 2.00 mm, and 2.00 to 4.00 mm) were obtained from the rachis of the palm fronds. To bind the particles, 8% urea formaldehyde resin was used via hot pressing at 120 ºC for 6 min at 1.6 MPa. Three types of panels were generated to evaluate the influence of particle size. Analysis of their physico-mechanical properties showed that their mechanical performance was superior to the existing insulating boards used in the building industry. The average thermal conductivity of the panels was 0.062 W/(K·m) and did not depend on the size of the particles. At frequencies of 125 and 250 Hz, the experimental boards were classified as class D acoustic panels. The manufactured panels had high values of sound transmission loss (TL), despite the thinness of the panels, which indicates that they have good acoustic insulation capacity. Acoustic properties could be improved by increasing the thickness of the boards. Due to their mechanical, thermal, and acoustic properties, these panels could be used as lining and as false ceilings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call