Abstract

The preliminary study reported here investigates if unit-cell inclusion-symmetries may be broken in time-reversalinvariant topological insulator designs, while maintaining the desired global behaviour of pseudo-spin-dependent edge state based bi-directional, back-scattering robust, energy propagation. By allowing symmetries to be broken additional geometrical design freedom is attained, which may turn out to enable an improvement of various performance measures such as bandwidth and field confinement. The particular study considers a time-reversal-invariant acoustic topological insulator design, designed using a modified version of our recently proposed topology optimization based method for designing photonic and acoustic topological insulators.1 This method relies on a carefully constructed model system combined with the application of density based topology optimization to design two carefully interfaced crystal phases to maximize the flow of energy through the system. Through simple modifications of the method, we demonstrate that it is possible to design structures with different symmetry conditions from those that have previously been investigated using the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.