Abstract
Theoretical chromospheric models described in the two previous papers of this series are used to study the relationship between the chromospheric emission and the lling factor. This theoretically determined rela- tionship shows that the chromospheric emission flux in Ca II (H+K) is approximately proportional to the square root of the magnetic lling factor at the stellar surface. To relate the lling factor to stellar rotation rate, we compare the theoretical fluxes with observations of stars with known rotation period. The comparison shows that the Rossby number is probably a more appropriate measure of the rotation influence on activity of main-sequence stars than the rotation period. Our theoretical Mg II (h+k) and Ca II (H+K) emission fluxes are also found to be well correlated, which is in a good agreement with the observational data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Astronomy & Astrophysics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.