Abstract
A new scheme for the calculation of spatial derivatives has been developed. The technique is based on recursive derivative operators that are generated by an [Formula: see text] fit in the spectral domain. The use of recursive operators enables us to extend acoustic and elastic wave simulations to shorter wavelengths. The method is applied to the numerical solution of the 2D acoustic wave equation and to the solution of the equations of 2D dynamic elasticity in an isotropic medium. An example of reverse-time migration of a synthetic data set shows that the numerical dispersion can be significantly reduced with respect to schemes that are based on finite differences. The method is tested for the solutions of the equations of dynamic elasticity by comparing numerical and analytic solutions to Lambâs problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.