Abstract

A novel approach based on the passive acoustic emission (AE) monitoring technique has been established for analyzing particle–wall collision and friction separately in the present work. Using power spectrum density analysis, the main frequency of AE signal caused from particle–wall collision is found to be higher than that generated by particle–wall friction. Besides, a method for quantitatively extracting the information on particle–wall collision and friction has been set up by wavelet transform analysis. On the basis of these analyses, a theoretical approach has been established for relating the AE signals and solids loading ratio in a vertical pneumatic conveying pipe. The model predictions are verified using experimental data and are in good agreement. Particle mass flow rates obtained using this model give errors less than 6.62%. Conclusions can be drawn that the AE technique has great potential in the measurement of hydrodynamics in pneumatic conveying as well as similar particulate processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.