Abstract
Combustion instability has become a major issue for gas turbine manufacturers. Stricter emission regulations, particularly on nitrogen oxides, have led to the development of new combustion methods, such as lean premixed prevaporized(LPP)combustion,to replacethetraditionaldiffusion e ame.However,LPPcombustionismuchmore liable to generate strong oscillations, which can damage equipment and limit operating conditions. As a tutorial, methods to investigate combustion instabilities are reviewed. Theemphasis is on gas turbine applications and LPP combustion. The e ow is modeled as a one-dimensional mean with linear perturbations. Calculations are typically done in the frequency domain. The techniques described lead to predictions for the frequencies of oscillations and the susceptibility to instabilities for which linear disturbances grow expotentially in time. Appropriate boundary conditions are discussed, as is the change in the linearized e ow across zones of heat addition and/or area change. Many of the key concepts are e rst introduced by considering one-dimensional perturbations. Later higher-order modes, particularly circumferential waves, are introduced, and modal coupling is discussed. The modeling of a simplie ed combustion system, from compressor outlet to turbine inlet, is described. The approaches are simple and fast enough to be used at the design stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.