Abstract
The proposed method allows for an extended analysis of the wave analysis, internal powers, and acoustic performance of anisotropic poroelastic media within semi-infinite multilayered systems under arbitrary excitation. Based on a plane wave expansion, the solution is derived from a first order partial derivative as proposed by Stroh. This allows for an in-depth analysis of the mechanisms controlling the acoustic behaviour in terms of internal powers and wave properties in the media. In particular, the proposed approach is used to highlight the influence of the phenomena intrinsic to anisotropic poroelastic media, such as compression-shear coupling related to the material alignment, the frequency shift of the fundamental resonance, or the appearance of particular geometrical coincidences in multilayered systems with such materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.