Abstract

The use of robots in carrying out various tasks is popular in many industries. In order to carry out a task, a robot has to move from one location to another using shorter, safer and smoother route. For movement, a robot has to know its destination, its previous location, a plan on the path it should take, a method for moving to the new location and a good understanding of its environment. Ultimately, the movement of the robot depends on motion planning and control algorithm. This paper considers a novel solution to the robot navigation problem by proposing a new hybrid algorithm. The hybrid algorithm is designed by combining the ant colony optimization algorithm and kinematic equations of the robot. The planning phase in the algorithm will find a route to the next step which is collision free and the control phase will move the robot to this new step. Ant colony optimization is used to plan a step for a robot and kinematic equations to control and move the robot to a location. By planning and controlling different steps, the hybrid algorithm will enable a robot to reach its destination. The proposed algorithm will be applied to multiple point-mass robot navigation in a multiple obstacle and line segment cluttered environment. In this paper, we are considering a priori known environments with static obstacles. The proposed motion planning and control algorithm is applied to the tractor-trailer robotic system. The results show a collision and obstacle free navigation to the target. This paper also measures the performance of the proposed algorithm using path length and convergence time, comparing it to a classical motion planning and control algorithm, Lyapunov based control scheme (LbCS). The results show that the proposed algorithm performs significantly better than LbCS including the avoidance of local minima.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.