Abstract

Background: Computer-Assisted Diagnosis (CAD) has become a common practice of use in the healthcare industry due to its improved accuracy and reliability. The CAD systems are expected to improve the quality of medical care by assisting healthcare professionals with a wide range of clinical decisions. A CAD system is a combination of Computer-Assisted Detection (CADe) and Computer-Assisted Diagnosis (CADx) system. Objective: The objective of this research article is to generate an optimized rule-set for medical diagnosis capable of providing improved accuracy. It is evident from the literature that keeping a balance between these performance parameters is a real challenge. Methods: In order to achieve the desired objective, the following two contributions have been proposed to improve diagnosis accuracy: 1) an unsupervised feature selection approach based on ACO Meta-heuristic is used to design the CADe system, and 2) an ACO assisted decision tree classifier technique is employed to make CADx system. Results: Three popular UCI (Wisconsin Breast Cancer, Pima Indian Diabetes and Liver Disorder) medical domain datasets have been used to evaluate the performance of the proposed model. The exploratory result analysis shows the efficiency of the proposed work as compared to existing work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.