Abstract
The Ant Colony Optimization (ACO) algorithms are computational models inspired by the collective foraging behavior of ants. The ACO algorithms provide inherent parallelism, which is very useful in multiprocessor environments. They provide balance between exploration and exploitation along with robustness and simplicity of individual agent. In this paper, ACO based dynamic scheduling algorithm for homogeneous multiprocessor real-time systems is proposed. The results obtained during simulation are measured in terms of Success Ratio (SR) and Effective CPU Utilization (ECU) and compared with the results of Earliest Deadline First (EDF) algorithm in the same environment. It has been observed that the proposed algorithm is very efficient in underloaded conditions and it performs very well during overloaded conditions also. Moreover, the proposed algorithm can schedule some typical instances successfully which are not possible to schedule using EDF algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.