Abstract
BackgroundThe short-read whole-genome sequencing (WGS) approach has been widely applied to investigate the genomic variation in the natural populations of many plant species. With the rapid advancements in long-read sequencing and genome assembly technologies, high-quality genome sequences are available for a group of varieties for many plant species. These genome sequences are expected to help researchers comprehensively investigate any type of genomic variants that are missed by the WGS technology. However, multiple genome alignment (MGA) tools designed by the human genome research community might be unsuitable for plant genomes.ResultsTo fill this gap, we developed the AnchorWave-Cactus Multiple Genome Alignment (ACMGA) pipeline, which improved the alignment of repeat elements and could identify long (> 50 bp) deletions or insertions (INDELs). We conducted MGA using ACMGA and Cactus for 8 Arabidopsis (Arabidopsis thaliana) and 26 Maize (Zea mays) de novo assembled genome sequences and compared them with the previously published short-read variant calling results. MGA identified more single nucleotide variants (SNVs) and long INDELs than did previously published WGS variant callings. Additionally, ACMGA detected significantly more SNVs and long INDELs in repetitive regions and the whole genome than did Cactus. Compared with the results of Cactus, the results of ACMGA were more similar to the previously published variants called using short-read. These two MGA pipelines identified numerous multi-allelic variants that were missed by the WGS variant calling pipeline.ConclusionsAligning denovo assembled genome sequences could identify more SNVs and INDELs than mapping short-read. ACMGA combines the advantages of AnchorWave and Cactus and offers a practical solution for plant MGA by integrating global alignment, a 2-piece-affine-gap cost strategy, and the progressive MGA algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.