Abstract

In this paper, a thermoviscoplastic constitutive model for geomaterials is presented. The model is formulated based on two aspects: (i) the nonstationary flow surface theory, which is used to describe the viscous behaviour of geomaterials, and (ii) the thermoplasticity concept, which is adopted to introduce the effect of temperature on geomaterials. In the model, the yield surface evolves with the viscoplastic strain, viscoplastic strain rate and temperature. Thus, it allows the description of combined effects of strain rate and temperature on the mechanical behaviour of geomaterials. The model has been used to simulate various tests involving different thermomechanical loading paths, including non-isothermal constant rate of strain tests, cyclic heating and cooling tests, creep tests with temperature changes and stress relaxation tests. The simulation results agree well with measurements, demonstrating the capacity of the proposed model to reproduce the various thermoviscoplastic behaviour of geomaterials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.