Abstract

HB (hepatoblastoma) is most common in children with liver cancer and few options for treating HB. Thus, it is of great significance to investigate the regulatory mechanism of HB and/or identify new therapeutic targets for clinical treatment of HB. Here, we showed that ACLY (ATP citrate lyase), an important lipometabolic enzyme for de novo biosynthesis of fatty acids and steroids, has a higher expression in HB tissues than noncancerous tissues, and is required for HB cell proliferation. Moreover, knocking down ACLY in HB cells caused severe S-phase arrest and apoptosis. Mechanistically, ACLY knockdown significantly silenced the Wnt signaling pathway and reduced β-catenin expression in HB cells. Conversely, the apoptotic alleviation of HB cells by overexpressing ACLY was blocked by silencing β-catenin, suggesting the modulation of HB cells by ACLY-β-catenin axis. Our results uncovered the role of ACLY in HB cells and presented a theoretical approach for HB targeted therapy in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call