Abstract

Ciprofloxacin (CIP) and levofloxacin (LEV), widely used fluoroquinolone antibiotics, are often found in sewage from the sewage treatment plants and marine environment. In this study, CIP and LEV biodegrading bacterial consortia were obtained from industrial wastewater. Microorganisms in these consortia were identified as Acinetobacter baumannii (A. baumannii), Klebsiella pneumoniae (K. pneumoniae) and Elizabethkingia miricola (E. miricola). The impacts of the critical operating parameters on the elimination of CIP and LEV by bacterial consortia have been investigated and optimized to achieve the maximum levels of CIP and LEV biodegradation. Using liquid chromatography with tandem mass spectrometry (LC-MS-MS), possible degradation pathways for CIP and LEV were suggested by analyzing the intermediate degradation products. The role of the enzymes fluoroquinolone-acetylating aminoglycoside (6′-N-acetyltransferase) and cytochrome P450 (CYP450) in the breakdown of fluoroquinolones (FQs) was investigated as well. According to our findings, various biodegradation mechanisms have been suggested, including cleavage of piperazine ring, substitution of F atom, hydroxylation, decarboxylation, and acetylation, as the main biotransformation reactions. This study discovers the ability of non-reported bacterial strains to biodegrade both CIP and LEV as a sole carbon source, providing new insights into the biodegradation of CIP and LEV.Graphical abstract

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call