Abstract

Helicobacter pylori is a human pathogen that infects the stomach, where it experiences variable pH. To survive the acidic gastric conditions, H. pylori produces large quantities of urease, a nickel enzyme that hydrolyzes urea to ammonia, which neutralizes the local environment. One of the regulators of urease expression in H. pylori is HpNikR, a nickel-responsive transcription factor. Here we show that HpNikR also regulates urease expression in response to changes in pH, linking acid adaptation and nickel homeostasis. Upon measuring the cytosolic pH of H. pylori exposed to an external pH of 2, similar to the acidic shock conditions that occur in the human stomach, a significant drop in internal pH was observed. This decrease in internal pH resulted in HpNikR-dependent activation of ureA transcription. Furthermore, analysis of a slate of H. pylori genes encoding other acid adaptation or nickel homeostasis components revealed HpNikR-dependent regulation in response to acid shock. This regulation was consistent with pH-dependent DNA binding to the corresponding promoter sequences observed in vitro with purified HpNikR. These results demonstrate that HpNikR can directly respond to changes in cytosolic pH during acid acclimation and illustrate the exquisitely coordinated regulatory networks that support H. pylori infections in the harsh environment of the human stomach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.