Abstract

Lipoprotein lipase from Pseudomonas sp. was the best enzyme to concentrate eicosapentaenoic and docosahexaenoic acids (EPA and DHA) in sardine oil by acidolysis reaction, and acetone was more effective than n-hexane as a solvent for dissolving the reactants and concentrating the two fatty acids. The water concentration in the reaction mixture was a decisive factor governing the enrichment of EPA and DHA and the yield of glycerides. EPA and DHA were more concentrated, but the yield of glycerides decreased, when the water concentration was increased gradually. Thus, the concentration rates of both the fatty acids were low with 0.25% water, although a considerable amount of diglyceride was detectable in the reaction products. The effect of reaction temperature was very slight with the use of acetone; however, the ratio DHA/EPA increased when the temperature was lowered in the presence of n-hexane. When acidolysis was performed at 25°C for 1 h, using 10,000 units of lipase per g of the reactants, the total percentage of EPA and DHA reached 65% in the glycerides and the recoveries of the two acids were 87.4 and 81.3%, respectively, based on the contents in the original sardine oil. The relationship of the enzyme substrate specificity to the reaction results was also investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.