Abstract

The self-dissociation of water has been studied over the temperature range from 0 to 300°C and in KCl media from 0.02m to 2.7m. Also, isothermal pressure coefficients of the dissociation quotients have been obtained in these same media up to 250°C. A potentiometric method employing a hydrogen electrode concentration cell with flowing solutions was employed. The estimated accuracy of logQw values up to 250°C is 0.02 log units and at 300°C is 0.04 log units. Smoothing functions have been found which fit these data along with the precise potentiometric data of Harned and co-workers at low temperatures, the existing calorimetric data up to 55°C and the recent conductimetric measurements of pure water up to 271°C by Bignoldet al., within about 1.5 times the estimated errors. Thermodynamic quantities for the dissociation reaction have been tabulated for rounded values of temperature and ionic strength at the saturation pressure of water. The isothermal pressure coefficients of log Qw varies approximately linearly with the square root of the ionic strength. This and the dependence of logKw on the density of the water is consistent with the assumption that the molal volumes of aqueous ions vary linearly with the compressibility coefficient of water. The heat for the dissociation reaction at infinite dilution is also shown to be strongly dependent on density.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.