Abstract

Amorphous silica-aluminas (ASAs) are widely used in acid-catalyzed C-H activation reactions and biomass conversions in large scale, which can be promoted by increasing the strength of surface Brønsted acid sites (BAS). Here, we demonstrate the first observation on a synergistic effect caused by two neighboring Al centers interacting with the same silanol group in flame-made ASAs with high Al content. The two close Al centers decrease the electron density on the silanol oxygen and thereby enhance its acidity, which is comparable to that of dealuminated zeolites, while ASAs with small or moderate Al contents provide mainly moderate acidity, much lower than that of zeolites. The ASAs with enhanced acidity exhibit outstanding performances in C–H bond activation of benzene and glucose dehydration to 5-hydroxymethylfurfural, simultaneously with an excellent calcination stability and resistance to leaching, and they offer an interesting potential for a wide range of acid and multifunctional catalysis.

Highlights

  • Amorphous silica-aluminas (ASAs) are widely used in acid-catalyzed C-H activation reactions and biomass conversions in large scale, which can be promoted by increasing the strength of surface Brønsted acid sites (BAS)

  • The ASA materials were prepared by flame spray pyrolysis as described in Supplementary Methods and they are designated as SA/x, where x = 10 or 50 represents the percentage of Al atoms with respect to the total amount of Al and Si atoms in the precursor

  • The tomographic reconstruction qualitatively shows a homogeneous distribution of Al, Si and O (Supplementary Fig. 1b, c, d), where each sphere represents the 3D position of an individual atom

Read more

Summary

Introduction

Amorphous silica-aluminas (ASAs) are widely used in acid-catalyzed C-H activation reactions and biomass conversions in large scale, which can be promoted by increasing the strength of surface Brønsted acid sites (BAS). Silica-alumina materials, crystalline zeolites and amorphous silica-aluminas (ASAs), are among the most popular solid acids that have been widely commercialized as efficient and environmentally friendly catalysts in the petrochemical industry[1], and in bio-refinery[2] These materials can provide Brønsted acid sites (BAS) with tunable density and strength, which facilitates the optimization of the surface acidity to promote a series of important industrial chemical reactions, through the formation of surface complexes or transition states by proton transfer from BAS to reactants[3,4,5,6], such as to initialize C–H activation for hydrocarbon conversions[7,8,9,10,11,12]. The synergy between two nearby Al sites in the zeolite framework is impossible due to the absence of Al-OAl linkage based on Löwenstein’s rule[28]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.