Abstract

Soils are an important source of NO, particularly in dry lands because of trade-offs that develop between biotic and abiotic NO-producing processes when soils dry out. Understanding how drier climates may offset the balance of these trade-offs as soils transition toward more arid states is, therefore, critical to estimating global NO budgets, especially because drylands are expected to increase in size. We measured NO emission pulses after wetting soils from similar lithologies along an altitudinal gradient in the Sierra Nevada, CA, where mean annual precipitation varied from 670 to 1500mm. Along the gradient, we measured field NO emissions, and used chloroform in the laboratory to reduce microbial activity and partition between biotic and abiotic NO-producing processes (i.e., chemodenitrification). Field NO emission pulses were lowest in the acidic and SOM-rich soils (4-72ng NO-N m-2 s-1 ), but were highest in the high-elevation barren site (~560ng NO-N m-2 s-1 ). In the laboratory, NO emission pulses were up to 19× greater in chloroform-treated soils than in the controls, and these abiotic pulses increased with elevation as pH decreased (6.2-4.4) and soil organic matter (SOM) increased (18-157mg C g-1 ). Drought can shift the balance between the biotic and abiotic processes that produce NO, favoring chemodenitrification during periods when biological processes become stressed. Acidic and SOM-rich soils, which typically develop under mesic conditions, are most vulnerable to N loss via NO as interactions between pH, SOM, and drought stimulate chemodenitrification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call