Abstract

Chlorinated acetaldehydes (CALs) are typical chlorinated organic compounds that posing a great threat to biological wastewater treatment plants. In this study, volatile batch acid (VFA) tests were employed to investigate the acidification inhibition, biodechlorination, and biotransformation of high-strength CALs on hydrolytic acidification. The results indicated that the optimum parameters were 4 g/L sludge, pH = 8, and glucose as an electron donor. Moreover, the acidification inhibition and biodechlorination showed a strongly positive correlation with the degree of chlorination and CAL concentrations. Extracellular polymeric substances (EPS) decreased dramatically, while DNA increased sharply under higher CAL concentrations, which was the result of cell death caused by the toxicity of the CALs. Additionally, the relative toxicities of the CALs were as follows: trichloroacetaldehyde > dichloroacetaldehyde > chloroacetaldehyde. Furthermore, Excitation-Emission-Matrix (EEM) spectra of EPS revealed that aromatic protein-like substances I interacted with CALs to achieve a slight removal of CALs. The detected products revealed that some of the chlorine atoms and aldehyde groups in the CALs were removed by microbes to certain degree. Moreover, microbial community analysis indicated that the dominant phyla were Actinobacteria, Bacteroidetes, and Synergistetes, which had a stronger tolerance to CALs. Notably, biodechlorination was closely related to a remarkable increase in members of the genus Trichococcus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.