Abstract

Field application of organic slurries contributes considerably to emissions of ammonia (NH3) which causes sever environmental damage and can result in lower nitrogen (N) fertilizer efficiency. In recent years, field acidification systems have been introduced to reduce such NH3 emissions. However, combined field data on ammonia emissions and N use efficiency of acidified slurries, in particular by practical acidification systems, are scarce. Here, we present for the first time a simultaneous in situ assessment of the effects of acidification of five different organic slurries with a commercial acidifications system combined with different application techniques. The analysis was performed in randomized plot trials in winter wheat and spring barley after two applications to each crop (before tillering and after flag leave emergence) in year 2014 in Denmark. Slurry types included cattle slurry, mink slurry, pig slurry, anaerobic digestate, and the liquid phase of anaerobic digestate. Tested application techniques were trail hose application with and without slurry acidification in winter wheat and slurry injection and incorporation compared to trail hose application with and without acidification in spring barley. Slurries were applied on 9 m × 9 m plots separated by buffer areas of the same dimension. Ammonia emission was determined by a combination of semi-quantitative acid traps scaled by absolute emissions obtained from Draeger Tube Method dynamic chamber measurements. Experimental results were analysed by mixed effects models and HSD post hoc test (p < 0.05). Significant and almost quantitative NH3 emission reduction compared to trail hose application was observed in the barley trial by slurry incorporation of acidified slurry (89% reduction) and closed slot injection (96% reduction), while incorporation alone decreased emissions by 60%. In the two applications to winter wheat, compared to trail hose application of non-acidified slurry, acidification reduced NH3 emissions by 61% and 67% in cattle slurry, in anaerobic digestate by 45% and 57% and liquid phase of anaerobic digestate by 58%, respectively. Similar effects but on a lower emission level were observed in mink slurry, while acidification showed almost no effect in pig slurry. Acidifying animal manure with a commercial system was confirmed to consistently reduce NH3 emissions of most slurry types, and emission reductions were similar as from experimental acidification systems. However, failure to reduce ammonia emissions in pig slurry hint to technical limitations of such systems. Winter wheat and spring barley yields were only partly significantly increased by use of ammonia emission mitigation measures, while there were significant positive effects on apparent nitrogen use efficiency (+17–28%). The assessment of the agronomic effects of acidification requires further investigations.

Highlights

  • Atmospheric nitrogen (N2 ) is transferred into reactive forms (Nr), e.g., through industrial fixation into ammonia (NH3 ) (~80 Mt N yr-1)

  • The experimental approach used in this work provided a means for simultaneous comparison of ammonia emissions depending on multiple slurry application technologies under identical conditions

  • Such a broad approach of simultaneous comparison of application systems and slurry types was performed for the first time in this study

Read more

Summary

Introduction

Atmospheric nitrogen (N2 ) is transferred into reactive forms (Nr), e.g., through industrial fixation into ammonia (NH3 ) (~80 Mt N yr-1). The primary purpose of this nitrogen (N) conversion is to support food production through fertiliser use. About 50% of the current human population depends on synthetic nitrogen fertilisers [1] for food. Nr not taken up by the crop is lost to the environment. The side effects of this Nr in the environment include global warming, acidification of soil, eutrophication of habitats, and water quality deterioration, as well as formation of atmospheric micro-particles [2]. Agricultural NH3 emissions (90% of total European Union NH3 emissions) cause about

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call