Abstract

Acidification or glucocorticoids increase the maximal activity and subunit mRNA levels of branched chain alpha-ketoacid dehydrogenase (BCKAD) in various cell types. We examined whether these stimuli increase transcription of BCKAD subunit genes by transfecting BCKAD subunit promoter-luciferase plasmids containing the mouse E2 or human E1alpha-subunit promoter into LLC-PK(1) cells, which do not express glucocorticoid receptors, or LLC-PK(1)-GR101 cells, which we have engineered to constitutively express the glucocorticoid receptor gene. Dexamethasone or acidification increased luciferase activity in LLC-PK(1)-GR101 cells transfected with the E2 or E1alpha-minigenes; acidification augmented luciferase activity in LLC-PK(1) cells transfected with these minigenes but dexamethasone did not. A pH-responsive element in the E2 subunit promoter was mapped to a region >4.0 kb upstream of the transcription start site. Dexamethasone concurrently stimulated E2 subunit promoter activity and reduced the binding of nuclear factor-kappaB (NF-kappaB) to a site in the E2 promoter. Thus acidification and glucocorticoids independently enhance BCKAD subunit gene expression, and the glucocorticoid response in the E2 subunit involves interference with NF-kappaB, which may act as a transrepressor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.