Abstract

Novel CuSbS2 quantum dots (QDs)/reduced graphene oxide (rGO) composites are self-assembled via a hot-injection method, and CuSbS2 QDs exhibit a near monodispersion on the rGO surface. The gas sensors based on CuSbS2 QDs/rGO composites show the relatively good gas responses toward NH3 with an outstanding detection limit of 500 ppb and an average response time of 50 s at room temperature, and visible light illumination is proven to further promote the sensing performance of the composites. The study of the sensing mechanism reveals that the acidic sites on the surface play an extremely important role in NH3 adsorption of the composites, and the reaction between NH3 molecules and the pre-adsorbed oxygen ions finally leads to the generation of NO molecules. The synergistic effect existing between CuSbS2 QDs and rGO, in terms of electron transfer, is certified as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.