Abstract

Acidic properties of cage-based, small-pore aluminosilicate zeolites with CHA, AFX, RHO, LEV, ERI, and LTA topologies and their silicoaluminophosphate (SAPO) analogues were measured by means of an ammonia IRMS (infrared/mass spectroscopy)-TPD (temperature-programmed desorption) method. All SAPO molecular sieves studied here showed weaker Bronsted acid strength (11–26 kJ mol–1 lower in the heat of ammonia desorption) than their aluminosilicate counterparts. The density functional theory (DFT) calculations of the ammonia desorption energy were in good agreement with experiments; the difference in the energy of ammonia desorption was less than 10 kJ mol–1. DFT also showed that the introduction of Al into the SiO2 framework to form aluminosilicate zeolites resulted in large changes to the distance between atoms close to the acid site, while Si substitution into the AlPO4 framework to form SAPO materials predominantly modified the angles between atoms relatively far from the acid site. The introduction of Al i...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call