Abstract

BackgroundCirculating levels of the systemic inflammation marker C-reactive protein (CRP) have been associated with increased risk and poor outcomes of many diseases, such as cardiovascular events and cancer. Accumulating evidence has indicated that the conformational rearrangement of human pentameric CRP (pCRP) to monomeric CRP (mCRP) is a prerequisite for participation in the pathogenesis. Therefore, determining the mechanism of the dissociation of pCRP into pro-inflammatory mCRP under physiological/pathological circumstances has been intriguing. MethodsThe effects of oxidative and acidic stress occurring in inflammation on pCRP were examined by electrophoresis, electron microscopy, protein fluorescence, neoepitope expression and endothelial cell responses. ResultsReactive oxygen species (ROS) generated by the copper-hydrogen peroxide system could rapidly induce the dissociation of CRP at mild acidic pH within four hours, but not at physiological pH of 7.4. Meanwhile, mannitol, a ROS scavenger, could not protect against dissociation, which implied that local ROS from accessible histidine residues may be crucially beneficial to the formation of mCRP in a redox-balanced microenvironment. Furthermore, mCRP generated by ROS could be reduced by DTT, which indicated the exposure of functional motif aa35-47, and showed potent proinflammatory actions on endothelial cells, comparable to mCRP generated by urea. Conclusiondissociation of pCRP to mCRP could be rapidly induced by ROS from copper- hydrogen peroxide system in dependence on mildly acidic stress regardless of a redox-balanced microenvironment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.