Abstract

Some challenging targets in CAPRI (T24/25 and T26) involve binding solvent accessible acidic residues at the core of the binding interface, where they are always found immersed in crystal waters. In fact, Asp and Glu residues are more likely to form part of the hydrogen bond network of their surrounding crystal water molecules than to form a buried salt bridge. Interestingly, many of the crystal waters mediating the intermolecular interactions of the acidic groups are already present in the unbound structure, reinforcing the notion that some water molecules behave as an extension of the protein structure. This is in contrast to acidic groups found in the periphery of the binding interface that form ubiquitous salt bridges that cement the high affinity complex, while at the same time they are exposed to rapidly exchanging water molecules. Because of this, dichotomy implicit solvent scoring functions fail to properly rank these complexes by prioritizing salt bridges rather than water mediated contacts. A detailed analysis of Target 24, for which our group predicted two out of the four successful homology model complex structures, and Target 26 reveal how crystal waters shape the binding cavities of acidic groups prior to binding, in agreement with the theory of anchor residues as mediators of protein recognition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.