Abstract

The effect of fermentation on colonic absorption of Ca and Mg was investigated in 8-week-old rats adapted to diets containing either digestible wheat starch (DS diets) or including resistant starch, i.e. 350 g raw potato starch/kg (RS diets). The dietary Ca level of the DS and RS diets was 2.5 or 7.5 g/kg. RS diets resulted in enlargements of the caecum together with hypertrophy of the caecal wall. Acidification of the caecal contents by microbial fermentation of RS was influenced by the dietary Ca level. Very acidic pH conditions and relatively low concentrations of short-chain fatty acids, in the presence of lactic acid fermentation, were observed with the 2.5 g Ca/kg level. Rats fed on RS diets had a higher percentage of soluble Ca (and inorganic phosphate) in the caecum, particularly of rats adapted to the high Ca level. As a result of the hypertrophy of the caecal wall and of an elevated concentration of soluble Ca, the caecal absorption of Ca was 5-6-fold higher in the RS groups than in the DS groups. The difference between dietary intake and faecal excretion (DI-FE) of Ca was higher in rats fed on RS diets than in those fed on DS diets, when the dietary Ca level was 2.5 g/kg. With the higher Ca intake the elevated rate of Ca absorption from the caecum in RS-fed rats was not paralleled by an enhanced DI-EE difference: this suggests a shift of the Ca absorption towards the large intestine. Feeding RS diets also enhanced Mg caecal absorption, resulting in a substantially higher DI-FE difference for Mg, especially with the 2.5 g Ca/kg diets, because a high Ca intake tends to inhibit Mg absorption. The present findings support the view that the large intestine may represent a major site of Ca (and Mg) absorption when acidic fermentations take place. This process could improve the digestive Ca balance when the dietary Ca supply is low; when the Ca supply is affluent, it rather shifts Ca absorption towards a more distal site of the digestive tract.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.