Abstract

BackgroundThe plant biomass and agro-industrial wastes show great potential for their use as attractive low cost substrates in biotechnological processes. Wheat straw and corn cob as hemicellulosic substrates were acid hydrolyzed and enzymatically saccharified for high xylose production. The hydrolysate was concentrated and fermented by using Saccharomyces cerevisiae and Kluyveromyces for production of xylitol.ResultsAcid hydrolysis of wheat straw and corn cob in combination with enzymatic hydrolysis showed great potential for production of free sugars from these substrates. Kluyveromyces produced maximum xylitol from acid treated wheat straw residues with enzymatic saccharification. The percentage xylitol yield was 89.807 g/L and volumetric productivity of 0.019 g/L/h. Kluyveromyces also produced maximum xylitol from corn cob acid hydrolyzed liquor with xylitol yield 87.716 g/L and volumetric productivity 0.018 g/L/h.ConclusionPlant and agro-industrial biomass can be used as a carbohydrate source for the production of xylitol and ethanol after microbial fermentation. This study revealed that wheat straw acid and enzyme hydrolyzed residue proved to be best raw material for production of xylitol with S. cerevisiae. The xylitol produced can be utilized in pharmaceuticals after purification on industrial scale as pharmaceutical purposes.

Highlights

  • The plant biomass and agro-industrial wastes show great potential for their use as attractive low cost substrates in biotechnological processes

  • Wheat straw and corn cob acid hydrolysis of liquor showed that xylose was present as a major sugar fraction 25.183 and 25.039 g/L, respectively

  • The present study reported the comparison of two substrates and two yeasts (Kluyveromyces and S. cerevisiae) for xylitol production

Read more

Summary

Introduction

The plant biomass and agro-industrial wastes show great potential for their use as attractive low cost substrates in biotechnological processes. Wheat straw and corn cob as hemicellulosic substrates were acid hydrolyzed and enzymatically saccharified for high xylose production. Tons of agro-industrial residues are generated annually in agricultural country like Pakistan. This residue contains significant amount of biochemical fractions like cellulose, hemicellulose and lignin to be converted into many valuable products for food and pharmaceuticals [1–3]. The acid and enzymatic hydrolysis break covalent bonds, hydrogen bonds, van der Waals forces and various intermolecular bridges between sugars. Agricultural biomass such as corn cob and wheat straw was acid hydrolyzed with mild acid 72% ­H2SO4 for production of xylitol [7]. Xylitol is identified as one of the twelve high value added chemicals which can be produced from lignocellulosic agricultural biomass through cost effective methods [8]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call