Abstract
Enantiomers of 3-O-methyloxazepam (MeOX) and 3-O-ethyloxazepam (EtOX) were resolved by chiral stationary phase high-performance liquid chromatography (CSP-HPLC). Reaction kinetics and deuterium isotope effects of acid-catalyzed racemization of enantiomeric MeOX in ethanol and enantiomeric EtOX in methanol were studied by spectropolarimetry. The acid-catalyzed heteronucleophilic substitution reactions of racemic MeOX in ethanol and racemic EtOX in methanol were studied by reversed-phase HPLC. Thermodynamic parameters involved in the reactions were obtained by temperature-dependent reaction rates. The effects of solvent's dielectric constant on the heteronucleophilic substitution reactions were also determined. A nucleophilically solvated and transient C3 carbocation intermediate resulting from an N4-protonated enantiomer, derived from a 1,4-benzodiazepine either in M (minus) or P (plus) conformation, is proposed to be an intermediate and responsible for the acid-catalyzed stereoselective nucleophilic substitution and the resulting racemization.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.