Abstract
Employing genetic mouse models we have recently shown that ceramide accumulation is critically involved in the pathogenesis of cystic fibrosis (CF) lung disease. Genetic or systemic inhibition of the acid sphingomyelinase (Asm) is not feasible for treatment of patients or might cause adverse effects. Thus, a manipulation of ceramide specifically in lungs of CF mice must be developed. We tested whether inhalation of different acid sphingomyelinase inhibitors does reduce Asm activity and ceramide accumulation in lungs of CF mice. The efficacy and specificity of the drugs was determined. Ceramide was determined by mass spectrometry, DAG-kinase assays, and fluorescence microscopy. We determined pulmonary and systemic Asm activity, neutral sphingomyelinase (Nsm), ceramide, cytokines, and infection susceptibility. Mass spectroscopy, DAG-kinase assays, and semiquantitative immune fluorescence microscopy revealed that a standard diet did not influence ceramide in bronchial respiratory epithelial cells, while a diet with Peptamen severely affected the concentration of sphingolipids in CF lungs. Inhalation of the Asm inhibitors amitriptyline, trimipramine, desipramine, chlorprothixene, fluoxetine, amlodipine, or sertraline restored normal ceramide concentrations in murine bronchial epithelial cells, reduced inflammation in the lung of CF mice and prevented infection with Pseudomonas aeruginosa. All drugs showed very similar efficacy. Inhalation of the drugs was without systemic effects and did not inhibit Nsm. These findings employing several structurally different Asm inhibitors identify Asm as primary target in the lung to reduce ceramide concentrations. Inhaling an Asm inhibitor may be a beneficial treatment for CF, with minimal adverse systemic effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Respiratory Cell and Molecular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.