Abstract

Scleroderma (SSc) is characterized by excess production and deposition of extracellular matrix (ECM) proteins. Activated fibroblasts play a key role in fibrosis in SSc and are resistant to Fas-mediated apoptosis. Acid sphingomyelinase (ASMase), a major sphingolipid enzyme, plays an important role in the Fas-mediated apoptosis. We investigated whether dysregulation of ASMase contributes to Fas-mediated apoptosis resistance in SSc fibroblasts. Fibroblasts were isolated from SSc patients and healthy controls. Western blot was performed to analyze protein levels and quantitative real time RT-PCR was used to determine mRNA expression. Cells were transiently transfected with siRNA oligos against ASMase or transduced with adenoviruses overexpressing ASMase. Apoptosis was induced using anti-Fas antibody (1 μg/mL) and analyzed using caspase-3 antibody or Cell Death Detection ELISA. SSc fibroblasts showed increased resistance to Fas-mediated apoptosis. ASMase expression was decreased in SSc fibroblasts and Transforming Growth Factor beta (TGFβ), the major fibrogenic cytokine involved in the pathogenesis of SSc, downregulated ASMase in normal fibroblasts. Forced expression of ASMase in SSc fibroblasts restored sensitivity of these cells to Fas-mediated apoptosis while blockade of ASMase was sufficient to induce partial resistance to Fas-induced apoptosis in normal fibroblasts. In addition, ASMase blockade decreased activity of protein phosphatase 2A (PP2A) through phosphorylation on Tyr(307) and resulted in activation of extracellular regulated kinase 1/2 (Erk1/2) and protein kinase B (Akt/PKB). In conclusion, this study suggests that ASMase deficiency promotes apoptosis resistance and contributes to activation of profibrotic signaling in SSc fibroblasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.