Abstract

Simple synthetic modifications that tune the molecular structures, thereby the properties of the molecules, are of topical interest. Herein, we report the synthesis of two novel cationic rosaniline-based conjugated microporous polymers (CMPs) from identical monomers via simple acid modulation (Acetic acid and BF3 ⋅ Et2 O). The condensation reaction of rosaniline with 2,4,6-triformylphloroglucinol in acetic acid renders β-ketoenamine-linked CMP (CMP-A) while changing the acid to BF3 ⋅ Et2 O, the linkages transform to enol and undergoes BF2 -complexation, leading to boranil CMP (CMP-B). BF2 -functionalities in boranil CMP significantly modified the optical and functional properties compared to β-ketoenamine-linked CMP. The cationic-delocalization along with the extended π-delocalization supported by chromophoric BF2 -groups allow CMP-B to exhibit broad absorption spanning the visible to Near-Infrared region (NIR). The absorption red-edge of CMP-B appears around 1277 nm (optical band gap ∼1.58 eV) while CMP-A displays at 981 nm (optical band gap ∼1.83 eV). Most interestingly, as a photocatalyst, CMP-B catalyzes hydrogen evolution with a superior rate of 252 μmol g-1 over CMP-A (100 μmol g-1 ). It is about 2.5 times higher performance. The transient photocurrent measurements, electrochemical impedance data, and in-depth mott-Schottky analysis demonstrate that the BF2 -group in CMP-B generates photoinduced charge carriers and their migration towards the active sites for photocatalysis. These polymers show significant photocatalytic H2 generation without any supportive metal co-catalyst. The BF2 complexed building blocks are a unique class of metal-free photocatalysts for hydrogen evolution through green and cost-effective approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.