Abstract

The critical need to enhance the quality of indoor air leads to the improvement of catalyst activity for the removal of formaldehyde. Sepiolite can be utilized in catalytic reactions for its unique structure, composition and high surface area. The adhesion between sepiolite fibers and the blocked microporous channel (by impurities) demands the activation of natural sepiolite through acid treatment. This treatment successfully produces acid-modified sepiolite Pt-supported samples. The impacts of different acid concentrations, Pt loading content and calcination temperature on catalytic activity for formaldehyde (HCHO) oxidation are studied. The catalytic activity of HCHO is characterized and evaluated by techniques including specific surface area, X-ray diffraction, Fourier transform infrared spectrum, X-ray photoelectron spectroscopy and transmission electron microscopy. The results show the maximum specific area of sepiolite at the optimized 0.06 M acid concentration. Among all the prepared samples, the 0.02Pt/Sep catalyst calcined at 500 °C exhibits the highest catalytic activity for the oxidation of HCHO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call