Abstract

The BOD inhibition test, the activated sludge respiration inhibition test, and the Microtox® Bioassay procedure were examined for their potential as rapid toxicity screening methods for acid mine drainage (AMD) and for setting toxicity threshold levels in receiving waters. The BOD inhibition test proved to be unsuitable due to the high chemical oxygen demand of the toxicant. The long incubation time (minimum 5 d at 20°C) allowed growth of chemo-autotrophic bacteria and resulted in excessive flocculation and precipitation of metals, making accurate and meaningful measurements of inhibition impossible. The activated sludge respiration inhibition test was successful in measuring AMD toxicity, and for deriving toxicity threshold levels for the basic heterotrophic community in surface waters. However, it is a very time-consuming technique and is not sensitive enough to be used as a routine screening technique. The variability in toxicity was found to be due to the availability of metals as well as the effect of pH on metabolism. Simple linear models were derived to estimate inhibition within surface waters. Prediction of the inhibition caused by AMD can be made as long as the pH of the river water after mixing and the dilution of the AMD are known. Most accurate predictions are made using equations for specific pH ranges, but a useful estimation of inhibition can be obtained using the general equation: inhibition (%) = -2.34 pH + 6.41 AMD (%) + 22.1. The Microtox® Bioassay method, although expensive, was rapid and simple to use. It was the most sensitive test of the three, with the toxic response of marine bacteria increasing notably from 5 to 15 min due to the presence of bivalent metals in the toxicant. The problem of repeatability and reproducibility encountered with the activated sludge inhibition test was overcome with the highly standardised Microtox® method, making it an ideal screening method for AMD. However, the advantage of the activated sludge inhibition test is that the types of heterotrophic micro-organisms found in activated sludge are similar to those found in receiving waters such as the Avoca River and so more meaningful toxicity threshold values can be obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call