Abstract
Acid mine drainage (AMD) is a pervasive source of metal pollution that severely impacts freshwater ecosystems and has a direct impact on human health. Conventional active and passive methods work very well for removing iron in AMD remediation, which is typically the highest metallic impurity. However, conventional passive remediation fails to remove all aluminum, which has severe ecological implications. Removal of aluminum ions using chelation, which traditionally uses small molecules that bind metals tightly for sequestration, holds promise. Yet, chelation strategies are limited because once introduced into surface water, small molecules are difficult to reclaim and often persist in the environment as pollutants. To address this, we have designed six unique scaffolds based on functional graphenic materials (FGMs) to create nonsoluble materials that could be placed at the end of a passive remediation process to remove persistent aluminum. When tested for efficacy, all six FGMs successfully demonstrated a reversible capacity to remove aluminum from acidic water, chelating up to 21 μg of Al/mg of FGM. Furthermore, when they were exposed to E. coli as an approximation for environmental compatibility, viability was unaffected, even at high concentrations, suggesting these FGMs are nontoxic and viable candidates for passive chelation-based remediation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.