Abstract

Sphingolipid metabolism plays an important role in determining the fate of a cell. Among several sphingolipid metabolites, ceramide is a key player in intracellular signal transduction. Ceramide is usually converted to various metabolites such as sphingomyelin, sphingosine, ceramide-1-phosphate, and glucosylceramide. If ceramide is accumulated in the cell, it induces apoptosis. On the other hand, its metabolite sphingosine is converted to sphingosine-1-phosphate (S1P), which promotes angiogenesis via G protein coupled receptor signaling. Therefore, the equilibrium in ceramide and S1P levels in cells plays an important role in angiogenesis as well as cell death. Acid ceramidase (AC) is a promising target protein in the development of multi-targeted anticancer drugs as its inhibition can simultaneously inhibit angiogenesis via the Akt and ERK 1/2 pathway and limit cancer growth through ceramide-induced apoptosis. Although some inhibitors of AC have been reported, they have not been proven effective for human therapy. Recent advancement in the elucidation of AC structure will facilitate the development of better inhibitors for treating human diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.