Abstract

AbstractContrary to the cleavage of α‐phenylthioureido peptides 1 proceeding through intermediate 2‐anilinothiazolinone 2, the b‐analog cis‐2‐(3‐phenylthioureido)cyclopentane‐carboxamide 5 forms transiently 4‐imino‐2‐thioxopyrimidine 6. Monitoring amide cyclization and hydrolysis of iminopyrimidine 6 in acid by UV showed that an equilibrium between 5 and 6 was reached followed by slower conversion of both compounds into 2‐oxo‐4‐thioxopyrimidine 7. Both processes were characterized by isosbestic points, the first due to parallel conversion of 5 into 6 and 7 (or 6 into 5 and 7) at a constant ratio while the second identical for both reactants – to conversion of equilibrated 5 and 6 into 7. The special isosbestic points allowed the determination of the individual constants of Scheme 2. Further confirmation was obtained from NMR product analysis and following the cyclization of amide 5 in DMSO:DCl. Product 2‐oxo‐4‐ thioxopyrimidine 7 hydrolyzed reversibly to thioureido acid 8. The cyclization rate of 8 allowed the participation of 6‐oxothiazine 10 formed by sulfur attack to be excluded. The absence of sulfur attack in the six‐membered case is explained by the longer CS bond bringing about greater bond angle strain at the tetrahedral ring atoms due to the geometrical characteristics of five‐ and six‐membered rings with planar segments. The cyclizations of amide 5 to iminopyrimidine 6 and to thiodihydrouracil 7 are first order in [H+], while the reactions of protonated imine 6H+ are zero order to amide and −1 to thiodihydrouracil. The reaction orders can be reconciled by assuming a rate determining proton transfer from the tetrahedral intermediate in amide cyclization. Copyright © 2007 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call