Abstract

Rates of acid-catalyzed enolization of acetophenone in dilute aqueous solution, measured under conditions where the solvated proton is the only acidic species present, give a hydrogen ion catalytic coefficient, [Formula: see text], that is 35% smaller than the value obtained by X acidity function extrapolation of measurements made in moderately concentrated sulfuric acid solutions. The difference may be attributed to catalysis by bisulfate ion in the sulfuric acid solutions; this is supported by direct measurement of the bisulfate ion catalytic coefficient in dilute sulfuric acid. This revised value of [Formula: see text] leads to new, but only slightly different, values of the keto–enol equilibrium constant for acetophenone in aqueous solution, pKE = 7.96 ± 0.04, the acidity constant for acetophenone ionizing as a carbon acid, [Formula: see text] and the encounter-controlled rate constant for the reaction of acetophenone enol with molecular bromine, k = (3.2 ± 0.4) × 109 M−1 s−1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call