Abstract

The rate of reduction of nitrite by trimethylamine-borane was followed by observing the decrease in nitrite absorbance under pseudo-first-order conditions. The reaction is acid-catalyzed and exhibits a first-order dependence on both amine-borane and total nitrite concentration. The molar equivalence of NaNO(2) to (CH(3))(3)NBH(3) = 2:1. Equimolar amounts of hydrogen and nitrous oxide are formed, and the molar ratio of nitrite reacted to N(2)O produced is 2:1. In concentrated HCl or H(2)SO(4), a correlation of rate with the Hammett acidity function, h(o), is observed. The reaction is subject to a pronounced inversesolvent isotope effect (k(D)()2(O)/k(H)()2(O) approximately 2.7) and a modest normal substrate effect (k((CH)()3())()3(N.BH)()3/k((CH)()3())()3(N.BD)()3 approximately 1.4). The reaction is first-order in H(3)O(+) in the region pH 0.7-2.7, but a second-order dependence is observed above pH 4 with the transition occurring at pH approximately pK(a) for HNO(2). Results are consistent with a mechanistic model involving preequilibration protonation of molecular nitrous acid followed by rate-limiting hydride attack on H(2)ONO(+) or free NO(+) to produce nitrosyl hydride as a reactive intermediate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.