Abstract

ABSTRACT Various surface-chemical interactions among the corneal epithelium, ocular mucous gel, tear film and tear film contaminants (e.g., cellular debris, lipids, bacteria) are characterized based on their apolar and polar (acid-base) surface properties. Based on this approach, the surface-chemical pathways of the tear film breakup and of the corneal epithelial lubrication, cleansing, wetting and defense are proposed. A strong monopolar repulsion keeps mucus in the form of a highly hydrated gel, which cannot adhere to the normal glycocalix carrying epithelial surface, but forms an effective surface-chemical trap for the apolar and weakly polar hydrophobic contaminants. However, mucus-deficiency and/or a host of epithelial surface abnormalities (e.g., increased cell loss, chemical or morphologic changes, damage) can initiate a vicious cycle comprising of factors such as: increased mucus contamination, loss of mucus and epithelial hydrophilicity, abnormal adhesion and aggregation of mucus, reduced mucus mobility and faulty surface cleansing. All of these factors can conspire to produce a chronically unstable tear film secondary to the loss of corneal surface wettability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.