Abstract

Acid-base equilibria/disequilibria were evaluated in vivo in post-branchial arterial blood and pre-branchial venous blood of freshwater rainbow trout (Oncorhynchus mykiss). This was accomplished using arterial and venous extracorporeal circuits in conjunction with a stopped-flow apparatus. After the abrupt stoppage of circulating post-branchial blood within the stopped-flow apparatus, pH increased slowly ([Delta]pH = +0.032 ± 0.004 pH units; n = 15), thus confirming the existence of an acid-base disequilibrium state in the arterial blood of rainbow trout. The slow downstream pH changes were unaffected by prior treatment of fish with the carbonic anhydrase inhibitor benzolamide (1.2 mg kg-1; [Delta]pH = +0.032 ± 0.01 pH units; n = 5) but were eliminated after intra-vascular injection of 10 mg kg-1 bovine carbonic anhydrase ([Delta]pH = -0.011 ± 0.003 pH units; n = 8). These results demonstrate that the acid-base disequilibrium in the arterial blood reflects a total absence of extracellular carbonic anhydrase activity. Similar stopped-flow experiments revealed the existence of a reduced, yet significant, acid-base disequilibrium in the venous blood circulating within the caudal vein ([Delta]pH = +0.004 ± 0.003 pH units; n = 15). Selective inhibition of extracellular carbonic anhydrase using benzolamide did not significantly influence the magnitude of the venous pH disequilibrium ([Delta]pH = +0.007 ± 0.007 pH units; n = 8) whereas intra-vascular injection of carbonic anhydrase eliminated the pH disequilibrium. These results demonstrate that extracellular carbonic anhydrase, although reported to be present within the skeletal muscle of rainbow trout, does not accelerate post-capillary pH changes in the venous circulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call