Abstract

Functional abnormalities of the central nervous system are observed with hypo- and hyperventilation. This study correlates changes of pH, carbon dioxide tension and carbon dioxide content in arterial and cerebral venous blood and cerebrospinal fluid during altered ventilation. With the experimental design in which ventilation was controlled and the sagittal sinus, femoral artery, and cisterna magna were cannulated, a slight metabolic acidosis was found. With 10% CO2 inhalation acidosis occurred in both blood and spinal fluid and early in the period of inhalation, the usual cerebrospinal-arterial fluid pCO2 gradient was reversed. With hyperventilation, pH and pCO2 changes were more pronounced in the arterial blood but, as hyperventilation was continued, the arterial-cerebrospinal fluid difference decreased. It appeared likely that brain tissue acts as an important buffer, absorbing and releasing CO2 during states of altered ventilation. CO2 diffuses rapidly across cell boundaries, whereas bicarbonate crosses more slowly, thus providing an explanation for the differences noted between blood and cerebrospinal fluid. The particular clinical importance of these observations is that arterial pH, pCO2, and CO2 content may not accurately reflect changes within the cerebrospinal fluid or brain when ventilation is altered. Submitted on May 1, 1961

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.