Abstract
Metabolic alkalosis leads to renal magnesium conservation, whereas metabolic acidosis is associated with urinary magnesium wasting. Micropuncture studies suggest that these actions affect magnesium transport in the distal tubule. The cellular mechanisms of acid-base changes were investigated in an immortalized mouse distal convoluted tubule (MDCT) cell line. Intracellular free Mg2+ concentration ([Mg2+]i) was determined by microfluorescence using the Mg(2+)-responsive dye, mag-fura 2. Mg2+ transport was assessed as a function of change in [Mg2+]i with time following placement of Mg(2+)-depleted cells into a buffer containing 1.5 mM magnesium. The uptake rate of Mg2+, d([Mg2+]i)/dt, into Mg(2+)-depleted cells determined with a buffer solution of pH 7.4 was 178 +/- 21 nM/s. Mg2+ uptake at pH 8.0 was markedly increased 278 +/- 35 nM/s, whereas transport at pH 6.0 was significantly reduced to 121 +/- 15 nM/s. Mg2+ uptake at pH 7.4 was not stimulated with 20 or 40 mM bicarbonate, nor were the differences in Mg2+ uptake with pH associated with changes in membrane voltage. Mg2+ uptake was stimulated with membrane hyperpolarization at pH 6.0 but not at pH 8.0. Chlorothiazide (10(-4) M), which stimulates Mg2+ uptake by hyperpolarizing the membrane voltage, increased uptake at pH 6.0, 59 +/- 14%, but decreased it at alkaline pH of 8.0, -55 +/- 3%. Accordingly, MDCT cells become refractory to the stimulating effects of hyperpolarization at alkaline pH values. These studies show that protons may directly affect Mg2+ transport in MDCT cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.