Abstract

Marsupial joeys are born ectothermic and develop endothermy within their mother's thermally stable pouch. We hypothesized that Tammar wallaby joeys would switch from α-stat to pH-stat regulation during the transition from ectothermy to endothermy. To address this, we compared ventilation (Ve), metabolic rate (Vo2), and variables relevant to blood gas and acid-base regulation and oxygen transport including the ventilatory requirements (Ve/Vo2 and Ve/Vco2), partial pressures of oxygen (PaO2), carbon dioxide (PaCO2), pHa, and oxygen content (CaO2) during progressive hypothermia in ecto- and endothermic Tammar wallabies. We also measured the same variables in the well-studied endotherm, the Sprague-Dawley rat. Hypothermia was induced in unrestrained, unanesthetized joeys and rats by progressively dropping the ambient temperature (Ta). Rats were additionally exposed to helox (80% helium, 20% oxygen) to facilitate heat loss. Respiratory, metabolic, and blood-gas variables were measured over a large body temperature (Tb) range (∼15-16°C in both species). Ectothermic joeys displayed limited thermogenic ability during cooling: after an initial plateau, Vo2 decreased with the progressive drop in Tb. The Tb of endothermic joeys and rats fell despite Vo2 nearly doubling with the initiation of cold stress. In all three groups the changes in Vo2 were met by changes in Ve, resulting in constant Ve/Vo2 and Ve/Vco2, blood gases, and pHa. Thus, although thermogenic capability was nearly absent in ectothermic joeys, blood acid-base regulation was similar to endothermic joeys and rats. This suggests that unlike some reptiles, unanesthetized mammals protect arterial blood pH with changing Tb, irrespective of their thermogenic ability and/or stage of development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call