Abstract

Lignocellulosic biomasses such as banana pseudostem are attractive cellulose sources for bioenergy production, and for the use in biorefinery processes. However, pretreatment of lignocellulosic material is required to remove hemicellulose and lignin, while increasing cellulose accessibility to enzymatic hydrolysis (i.e., decreasing biomass recalcitrance). The effect of different concentrations of acid (H2SO4), alkaline (NaOH) and peroxide (H2O2) pretreatments on the chemical composition, cellulose accessibility, and enzymatic digestibility of banana pseudostem were studied. The water insoluble solids (WIS) recovery was low (∼30%) for the severe pretreatment conditions applied, indicating high material solubilization. Acid pretreatment completely removed the hemicellulose content, whereas alkaline and peroxide pretreatments reduced its amount to 4.38 and 8.68%, respectively. In contrast, the lignin content increased (from 17.26 to 39.99%) after severe acid pretreatment, while alkaline and peroxide pretreatments reduced the lignin content to 7.65% and 7.17%, respectively. In line with hemicellulose and lignin removal, the cellulose content increased from 60.84 to 75.48 and 74.37%, respectively for alkaline and peroxide pretreatments, with no alteration for acid. Dye adsorption assays showed that alkaline and acid pretreatments resulted in high internal and external specific surface areas – indicative of high cellulose accessibility – when compared with peroxide pretreatments. Overall, alkaline and acid pretreatments resulted in the highest glucose yields from enzymatic hydrolysis of banana pseudostem, compared with peroxide pretreatment. In conclusion, concentrations of each pretreatment that led to the highest glucose yields was identified, confirming that the banana pseudostem is a great source of fermentable sugars, with high potential for biofuel production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.