Abstract

Nonviral vector-based gene therapy is a promising strategy for treating a myriad of diseases. Cell-penetrating peptides are gaining increasing attention as vectors for nucleic acid delivery. However, most studies have focused more on the transfection efficiency of these vectors than on their specificity and toxicity. To obtain ideal vectors with high efficiency and safety, we constructed the vector stearyl-TH by attaching a stearyl moiety to the N-terminus of the acid-activated cell penetrating peptide TH in this study. Under acidic conditions, stearyl-TH could bind to and condense plasmids into nanoparticle complexes, which displayed significantly enhanced cellular uptake and transfection efficiencies. In contrast, stearyl-TH lost the capacities of DNA binding and transfection at physiological pH. More importantly, stearyl-TH and the complexes formed by stearyl-TH and plasmids displayed no obvious toxicity at physiological pH. Consequently, the high transfection efficiency under acidic conditions and low toxicity make stearyl-TH a potential nucleic acid delivery vector for gene therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.